

## **GPC/FIPA Application Note #12**

## Advanced GPC/FIPA Analysis of Polyolefin Xylene Solubles

Polyolefins (Polypropylene, Polyethylene, and Copolymers) is the most widely used type of synthetic organic polymer in the world. They are classified as semi-crystalline materials that are heavily used in automotive, household, medical, and construction applications. Xylene Solubles is a traditional gravimetric (Wet) measurement for the percent amorphous fraction. %XS content is highly important for the property and performance specific for different grades. The tediousness and variability of the Wet method prompted the development of a more reliable chromatographic (FIPA) alternative that follows the ASTM extraction chemistry. FIPA (Flow Injection Polymer Analysis) is the simplest form of GPC where all the polymeric materials are excluded from a small porosity FIPA column. Using a Malvern Triple Detector GPC system, we can measure the %XS, Mw and IV of the amorphous XS extract all in a single injection. The analysis conditions are listed below.

| Dissolution Solvent/Mobile Phase | Xylene/THF       | Sample Conc       | 20 mg/mL     |
|----------------------------------|------------------|-------------------|--------------|
| Columns                          | H-100-3078 (HMJ) | Dissolution Temp  | 135C         |
| Flow Rate                        | 1 mL/min         | Dissolution Time  | 60 Minutes   |
| Column Temp                      | 45C              | Sample Filtration | 0.2 um Nylon |

Figure: Triple Chromatogram of an EPR Sample

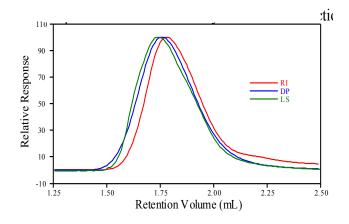



Table: Summary of Analysis for an EPR sample

| EPR Results | Runs | dn/dc | Mw      | IV    | % XS  |
|-------------|------|-------|---------|-------|-------|
| Average     | 6    | 0.08  | 299,367 | 2.39  | 15.27 |
| SD          |      |       | 1,718   | 0.02  | 0.09  |
| RSD         |      |       | 0.57%   | 0.57% | 0.59% |

The results show consistent %XS, Mw and IV data for the EPR sample.